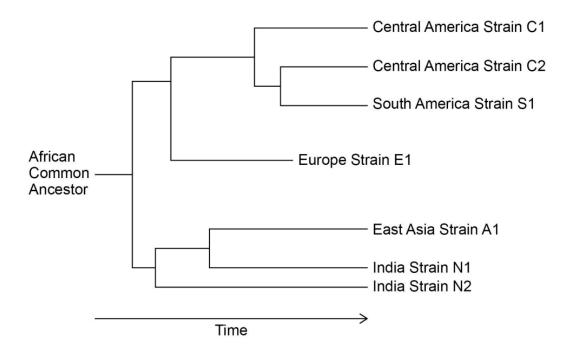


Biology Higher level Paper 1B

IB Biology HL prediction paper 1B


2 hours [Paper 1A and Paper 1B]

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- This product is an unofficial resource and is not affiliated with, endorsed by, or produced by the International Baccalaureate Organization (IBO).
- The maximum mark for paper 1B is [35 marks].
- The maximum park for paper 1A and paper 1B is [75 marks].

[1]

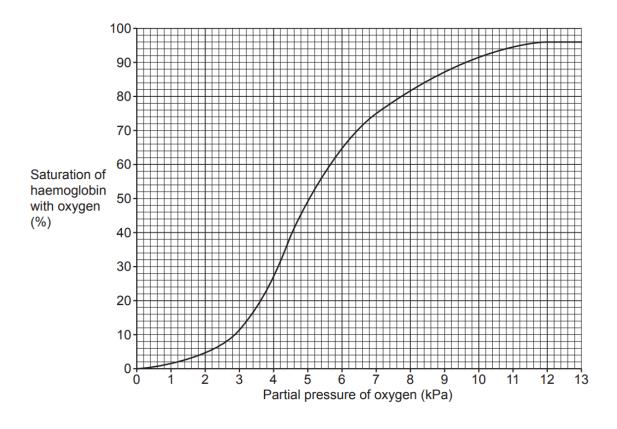
1. A phylogenetic diagram for multiple **Plasmodium vivax** strains from different world regions is shown below.

(a)	identity the pair of strains that share the most recent common ancestor.

							 	•				 -	-	 	 						•	•			•				 		•	 		

(Question 1 continued)

(b)	State what a node represents in a cladogram and define a clade.	[2]
(c)	Deduce, with one piece of evidence from the branching pattern, whether Europe strain E1 is more closely related to Central America strain C2 or to East Asia strain A1.	[2]



(Question 1 continued)

(h)

(d)	Explain how the molecular clock can be used to estimate the divergence time between Central													
	America C1 and South America S1, and outline one limitation of this approach.	[3]												
(e)	Suggest one evolutionary reason why <i>P. vivax</i> is now rare in Africa despite an African commencestor.													
	ancestor.	[1]												

2. The image shows an oxygen dissociation curve for the mother's haemoglobin.

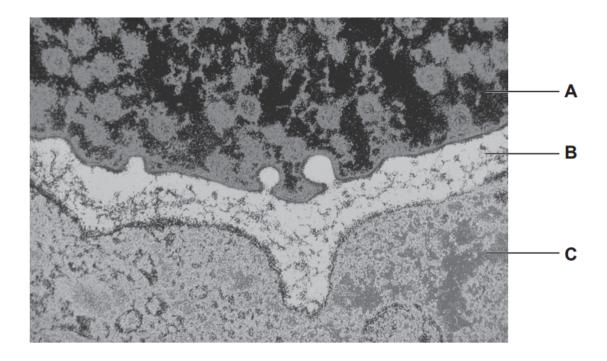
(a) At **5.0 kPa**, estimate the percentage saturation of maternal haemoglobin.

.....

[1]

(Question 2 continued)

(b)	Calculate the change in saturation between 4.0 kPa and 8.0 kPa .	[2]
(c)	State the name of the iron-containing group that binds O_2 in haemoglobin.	[2]
(d)	Describe how cooperative binding gives the dissociation curve its sigmoidal shape.	[2]



(Question 2 continued)

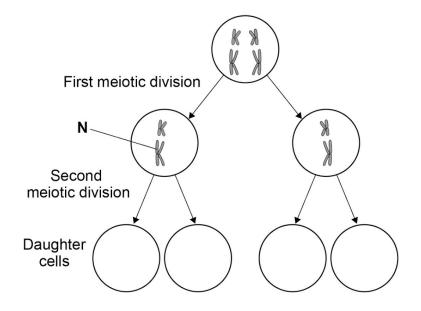
(e)	Explain why the foetal haemoglobin (HbF) curve is expected to be left-shifted relative to the maternal curve and how this supports oxygen transfer at the placenta	[3]

3. The electron micrograph below shows the junction between two neurons with labels A-C.

(a)	Label the structures indicated: A, B and C.	[1]

(Question 3 continued)

(b)	Describe how synaptic vesicles are formed, trafficked and prepared for release at the presynaptic active zone.	[3]



(Question 3 continued)

(c)	A neurotoxin inhibits acetylcholinesterase at the synapse. Explain the effect on postsynapti action potential generation and muscle control.	ic [2]

[1]

4. The image shows a cell after meiosis I; during meiosis II a non-disjunction event occurs in the chromosome labelled **N**.

Identify in which division the non-disjunction occurred.

(a)

(b)	Predict the	e chromosomal c	ontent of the fou	r daughter cells for	chromosome N after	meiosis II. [2]

(Question 4 continued)

(c)	Explain one possible outcome for chromosome number in the zygote if an abnormal gamete from (b) fuses with a normal gamete.	[2]
••••		
	,	

(d)

A test cross for a gene on chromosome N gives 58 dominant : 22 recessive offspring (n = 80).

Assuming a 1:1 expectation, use a chi-squared (χ^2) test to determine if the deviation is

signifi	cant at p = 0	0.05 ; df = 1 , critic	cal χ² = 3.84 . S	show working and state your conclusion	1. [4]
 					•
 					•