

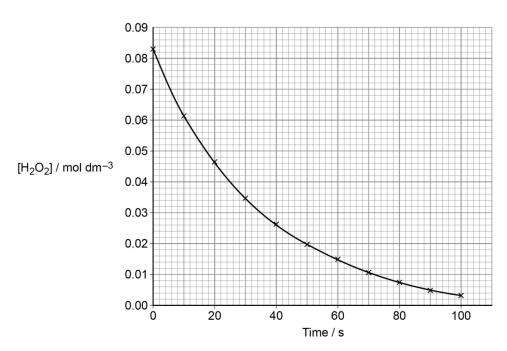
Chemistry Standard level Paper 1

IB Chemistry SL prediction paper 1

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet (not provided).
- The periodic table is provided for reference on page 2 of this examination paper.
- This product is an unofficial resource and is not affiliated with, endorsed by, or produced by the International Baccalaureate Organization (IBO).
- The maximum mark for this examination paper is [30 marks].



18	2 He 4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.90	54	Xe	131.29	98	Ru	(222)	118	Ono	(294)						
17		6	ī	19.00	17	IJ	35.45	35	Вŗ	79.90	53	П	126.90	82	At	(210)	117	Nns	(294)	71	Γn	174.97	103	Ľ	(292)
16		8	0	16.00	16	S	32.07	34	Se	78.96	52	Te	127.60	84	Po	(506)	116	Unh	(293)	20	ΧÞ	173.05	102	N _o	(229)
15		7	z	14.01	15	Ь	30.97	33	As	74.92	51	Sb	121.76	83	Bi	208.98	115	Uup	(288)	69	Tm	168.93	101	Мd	(258)
14		9	ပ	12.01	14	Si	28.09	32	Ge	72.63	20	Sn	118.71	82	Pb	207.20	114	Und	(586)	89	Ā	167.26	100	Fm	(257)
13		2	В	10.81	13	A	26.98	31	Ga	69.72	49	ln	114.82	81	F	204.38	113	Unt	(586)	29	Но	164.93	66	Es	(252)
12								30	Zn	65.38	48	g	112.41	80	Hg	200.59	112	Cu	(282)	99	Dy	162.50	86	Cf	(251)
11								29	Cn	63.55	47	Ag						Rg	\exists	65	Тр	158.93	62	Bķ	(247)
10								28	ï	58.69	46	Pd	106.42	82	꿆	195.08	110	Ds	(281)	64	g	157.25	96	Cm	(247)
6								27	ප	58.93	45	Rh	102.91	77	占	192.22	109	Mt	(278)	63	Eu	151.96	95	Am	(243)
8	mber i nt		tomic					26	Fe	55.85	44	Ru	101.07	92	Os	190.23	108	Hs	(569)	62	Sm	150.36	94	Pu	(244)
7	Atomic number Element		Relative atomic	mass				25	Mn	54.94	43	JC	(86)	75	Re	186.21	107	Bh	(270)	61	Pm	(145)	93	Np	(237)
9								24	ن	52.00	42	Mo	92.96	74	8	183.84	106	Sg	(593)	09	PN	144.24	95	n	238.03
ro.																-			_						\dashv
4.								_						_					\dashv			_			\dashv
4																, ,			_			1,			23
3								21	Sc	44.9	39	Y	88.9	- 22	La	138.	86	Ac	(227		+			#	
2		4	Be	9.01	12	Mg	24.31	20	S	40.08	38	Sr	87.62	26	Ba	137.33	88	Ra	(226)						
1	1 H 1.01	3	Ľ	6.94	11	Na	22.99	19	×	39.10	37	Rb	85.47	22	Cs	132.91	87	Fr	(223)						
	1		7		_	က		_	4			2			9			7					и	/\//	1///

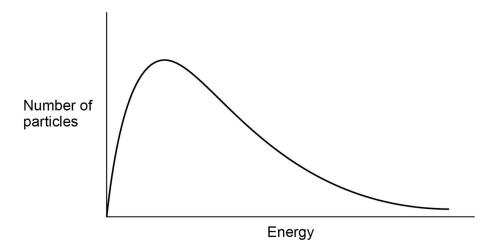
- 1. How many molecules are present in 0.250 mol of water, H₂O?
 - A. 6.02×10^{22} .
 - B. 1.51×10^{23} .
 - C. 3.01×10^{23} .
 - D. 6.02×10^{23} .
- **2.** Which nuclear symbol represents the isotope of carbon that contains seven neutrons?
 - A. ¹²₆C.
 - B. ¹³₆C.
 - C. ¹⁴₆C.
 - D. 19₆C.
- **3.** What is the ground-state electron configuration of a sulfur atom, S?
 - A. 1s² 2s² 2p⁶ 3s² 3p⁴.
 - B. 1s² 2s² 2p⁶ 3s² 3p³ 3d¹.
 - C. 1s² 2s² 2p⁶ 3s² 3p⁶.
 - D. 1s² 2s² 2p⁶ 3s² 3p⁵.

- **4.** A 4.50 g sample of ethanol, C_2H_5OH , is completely burned. How many moles of CO_2 are produced?
 - A. 0.065 mol.
 - B. 0.098 mol.
 - C. 0.196 mol.
 - D. 0.326 mol.
- **5.** The diagram below shows how the concentration of hydrogen peroxide varies with time during its decomposition.

Using the curve, what is the approximate initial rate of decomposition of H_2O_2 over the first 10 s?

- A. $2.3 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$.
- B. $2.3 \times 10^{-3} \text{ mol dm}^{-3} \text{ s}^{-1}$.
- C. $2.3 \times 10^{-2} \text{ mol dm}^{-3} \text{ s}^{-1}$.
- D. $2.3 \times 10^{-1} \text{ mol dm}^{-3} \text{ s}^{-1}$.

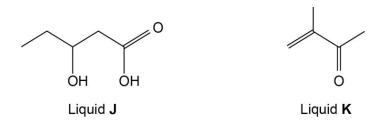
Which molecule has a trigonal pyramidal shape according to VSEPR theory?


6.

	A.	BF ₃ .
	B.	CH ₄ .
	C.	NH₃.
	D.	CO ₂ .
7.	Which	property of metals is most directly explained by the "sea of delocalised electrons"?
	A.	High density.
	B.	Electrical conductivity in the solid state.
	C.	Formation of basic oxides.
	D.	Low first-ionisation energies.

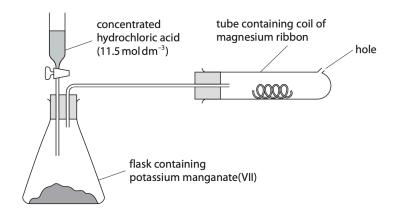
Turn over

8. The curve below depicts a Maxwell–Boltzmann distribution of molecular kinetic energies at temperature T.


Which change would produce a new curve whose peak is lower and shifted to higher energies while the total area under the curve remains unchanged?

- A. Decreasing the temperature of the gas.
- B. Adding a solid catalyst to the gas.
- C. Increasing the temperature of the gas.
- D. Doubling the pressure of the gas at constant temperature.
- **9.** Which row correctly compares the electrical conductivity and hardness of graphite and diamond at room temperature?

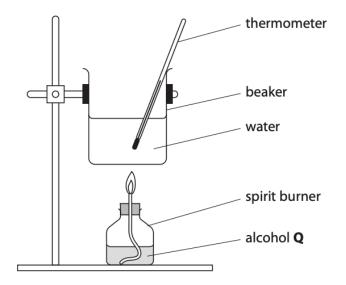
	Electrical c	onductivity	Hardness				
A.	Graphite: good	Diamond: poor	Graphite: soft Diamond: ver	y hard			
B.	Graphite: good	Diamond: good	Graphite: very hard Diamor	nd: soft			
C.	Graphite: poor	Diamond: good	Graphite: soft Diamond: ver	y hard			
D.	Graphite: poor	Diamond: poor	Graphite: very hard Diamon	d: hard			


10. The figure presents four skeletal formulae for liquids J, K, L and M.

Which is the correct IUPAC name for liquid M?

- A. Butanal.
- B. Pentanal.
- C. 1-Butanol.
- D. Propanal.
- **11.** Under which conditions does a real gas deviate most from ideal behaviour?
 - A. High T, low P.
 - B. High T, high P.
 - C. Low T, low P.
 - D. Low T, high P.

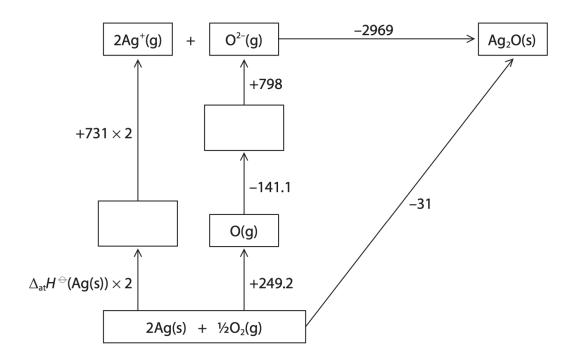
12. The apparatus below is used to react chlorine gas with a heated coil of magnesium ribbon to form magnesium chloride.



If the magnesium coil has a mass of 0.12~g and reacts completely, what mass of $MgCl_2(s)$ is produced?

- A. 0.10 g.
- B. 0.40 g.
- C. 0.47 g.
- D. 0.70 g.

13. The apparatus below shows a spirit-burner used to heat water in a simple calorimetry experiment.

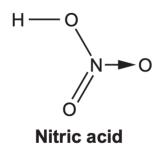

Data

Mass of spirit burner + alcohol $\bf Q$ before combustion = 20.24g Mass of spirit burner + alcohol $\bf Q$ after combustion = 19.48g Mass of water in the beaker = 500 g Temperature of the water before the experiment = 17.8 °C Temperature of the water at the end of the experiment = 28.7 °C Specific heat capacity of water = 4.18 Jg⁻¹ °C⁻¹

Using the data supplied, what is the experimental enthalpy change of combustion of alcohol Q per gram of fuel burned? (Assume all heat lost to the surroundings other than the water is negligible.)

- A. $3.0 \times 10^{1} \text{ kJ g}^{-1}$.
- B. $3.0 \times 10^2 \text{ kJ g}^{-1}$.
- C. $1.4 \times 10^{1} \text{ kJ g}^{-1}$.
- D. $1.4 \times 10^2 \text{ kJ g}^{-1}$.

14. The Born–Haber cycle below is for the formation of silver(I) oxide, $Ag_2O(s)$. The step $(\Delta_a \Box H^\circ (Ag))$ is left blank.



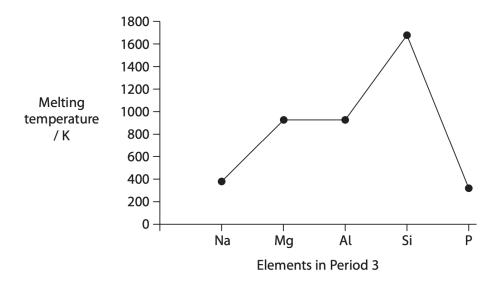
Using the data in the diagram, what is the standard enthalpy of atomisation of silver, $\Delta_a \Box H^\circ$ (Ag)?

- A. +142 kJ mol⁻¹.
- B. +250 kJ mol⁻¹.
- C. +285 kJ mol⁻¹.
- D. +570 kJ mol⁻¹.

15. The diagram shows the skeletal formula of nitric acid with the bonding around the central nitrogen atom clearly displayed.

Using VSEPR theory, what are the approximate values of the H-O-N and O-N-O bond angles in nitric acid?

- A. 104° and 120°.
- B. 120° and 120°.
- C. 104° and 104°.
- D. 109.5° and 120°.
- **16.** For $2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$ the forward reaction is exothermic. How do Kc and the equilibrium position change when the temperature is increased?


А. В.

Kc	Equilibrium position
Increases	Shifts right
Increases	Shifts left
Decreases	Shifts right
Decreases	Shifts left

C.

D.

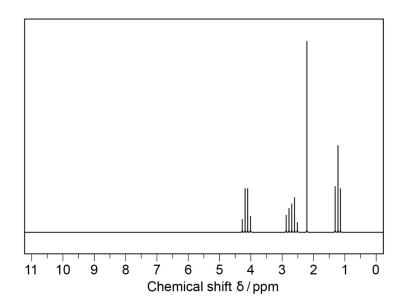
17. The graph below shows the melting temperatures of elements Na to P across Period 3.

Which element's high melting point is primarily due to a giant covalent (network) structure?

- A. Na.
- B. Mg.
- C. Si.
- D. P.

18. Which fuel releases the greatest energy per mole of CO₂ produced on complete combustion?

A.


B.

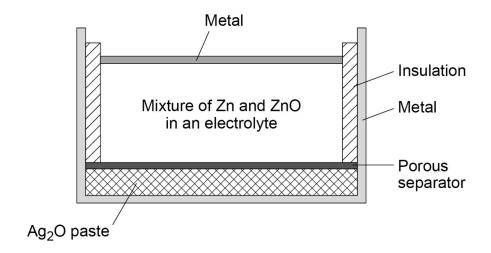
C.

D.

Fuel	ΔHc / kJ mol⁻¹	CO ₂ per mol fuel					
Methane, CH₄	-890	1					
Ethanol, C₂H₅OH	-1370	2					
Propane, C₃H₃	-2220	3					
Octane, C ₈ H ₁₈	-5470	8					

19. The ¹H NMR spectrum of compound Z in CDCl₃ is shown below.

How many different proton environments are present in compound Z?


- A. 2.
- B. 3.
- C. 4.
- D. 5.
- **20.** Which species acts as a Brønsted–Lowry base in the equilibrium below?
 - A. NH₄⁺.
 - B. HCO₃⁻.
 - C. NH₃.
 - D. H₂CO₃.

- **21.** A 0.010 mol dm⁻³ solution of ethanoic acid (Ka = 1.8×10^{-5} mol dm⁻³) is prepared at 298 K. What is its pH?
 - A. 2.68.
 - B. 3.38.
 - C. 4.74.
 - D. 5.28.
- **22.** In acidic solution CIO₂ is reduced by SO₃²⁻ to Cl⁻ while SO₃²⁻ is oxidised to SO₄²⁻. Which equation is correctly balanced?
 - A. $2 \text{ ClO}_2 + \text{SO}_3^{2-} + \text{H}_2\text{O} \rightarrow 2 \text{ Cl}^- + \text{SO}_4^{2-} + 2 \text{ H}^+.$
 - B. $2 \text{ ClO}_2 + \text{SO}_3^{2-} \rightarrow 2 \text{ Cl}^- + \text{SO}_4^{2-}$.
 - C. $2 \text{ CIO}_2 + \text{SO}_3^{2-} + 4 \text{ H}^+ \rightarrow 2 \text{ CI}^- + \text{SO}_4^{2-} + 2 \text{ H}_2\text{O}.$
 - D. $2 \text{ ClO}_2 + \text{SO}_3^{2-} + 2 \text{ H}^+ \rightarrow 2 \text{ Cl}^- + \text{SO}_4^{2-} + \text{H}_2\text{O}.$

23. The cross-section below represents a rechargeable silver–zinc cell containing a Zn/ZnO paste and an Ag₂O paste separated by a porous barrier.

While the cell is discharging, which row correctly states the direction of electron flow in the external circuit and the half-reaction occurring at the silver electrode?

	Electron flow (external circuit)	Half-reaction at silver electrode
A.	$Ag \rightarrow Zn$	$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)$
В.	$Zn \rightarrow Ag$	$Ag_2O(s) + H_2O(l) + 2e^- \rightarrow 2Ag(s) + 2OH^-(aq)$
C.	$Ag \rightarrow Zn$	$Ag(s) + 2OH^{-}(aq) \rightarrow Ag_2O(s) + H_2O(l) + 2e^{-}$
D.	Zn → Ag	$Ag(s) + 2OH^{\scriptscriptstyle -}(aq) \to Ag_2O(s) + H_2O(I) + 2e^{\scriptscriptstyle -}$

24.		reagent converts an alkene directly to a vicinal dihalogenoalkane under standard atory conditions?
	A.	Br ₂ (I) in the dark.
	B.	Br ₂ (I) with UV light.
	C.	HBr(g) with peroxide.
	D.	Cold, dilute KMnO₄(aq).
25.		dilute alkaline KMnO₄(aq) reacts with but-2-ene. Which statement describes the ochemistry of the main product?
	A.	Racemic mixture of butane-2,3-diol.
	B.	Syn addition yielding meso-butane-2,3-diol only.
	C.	Anti addition yielding a racemic mixture.
	D.	Syn addition yielding a racemic mixture.
26.	Which	species acts as a Lewis base and a bidentate ligand in transition-metal complexes?
	A.	CN⁻.
	B.	NH₃.
	C.	$C_2O_4^{2-}$.
	D.	H₂O.

27.	Which	compound	is	correctly	classified	as	an	ester	.7
~ 1.	V V I II C I I	Compound	13	COLLCCITY	Classifica	as	an	COLCI	

- A. CH₃COCH₃.
- B. CH₃CH₂COOH.
- C. CH₃COOCH₃.
- D. CH₃CH₂OCH₃.
- **28.** Which element is correctly matched with its periodic-table classification?
 - A. Silicon transition metal.
 - B. Bromine halogen.
 - C. Strontium lanthanoid.
 - D. Argon alkali metal.

29. Using the data below, calculate the standard enthalpy change, ΔH° , for this reaction:

 $4~NH_3(g)+5~O_2(g)\rightarrow 4~NO(g)+6~H_2O(I)$

Species	ΔHf° / kJ mol ⁻¹
NH₃(g)	-4 6
NO(g)	+90
H₂O(I)	-286

- A. –906 kJ.
- B. –1170 kJ.
- C. -1260 kJ.
- D. -1368 kJ.
- 30. In a coffee-cup calorimeter 1.500 g of KOH is dissolved in 100.0 g of water, raising the temperature from 22.5 °C to 29.8 °C. Assuming c = 4.18 J g⁻¹ K⁻¹ for the solution, what is Δ Hsol of KOH in kJ mol⁻¹?
 - A. -39.9.
 - B. -56.5.
 - C. –78.8.
 - D. -116.