

- 1. **A** energy/CO₂: CH₄ = 890 kJ; ethanol ≈ 685 kJ; propane ≈ 740 kJ; octane ≈ 684 kJ highest for methane.
- 2. **D** The balanced equation releases –789 kJ per mole of hydrazine, and 3 mol × (–789 kJ mol⁻¹) = -2.37×10^3 kJ.
- 3. $\mathbf{C} NH_3$ accepts H^+ to form NH_4^+ , so is the base.
- 4. **C** The electrophile has attacked the carbon directly opposite (para) to the methyl group, consistent with the ortho-/para-directing nature of an electron-donating CH₃ substituent.
- 5. **B** Ba²⁺ and PO₄³⁻ combine in a 3 : 2 ratio to balance charge, giving Ba₃(PO₄)₂.
- 6. **A**: Melting point correlates with lattice energy, which increases with higher charge density; the smaller Li⁺ and F⁻ give the greatest charge density and strongest attraction.
- 7. **B** mobile electrons allow charge flow, giving electrical conductivity.
- B Metals already have partially-filled bands; hotter lattices scatter carriers. Silicon is a semiconductor with a small band gap, so heating generates additional electron–hole pairs and higher conductivity.
- 9. **A** delocalised electrons in graphite allow conduction; diamond has none and is extremely hard.
- 10. **B** One repeat unit contains 5 C atoms (2 in the backbone, 3 in CH₃ groups), 9 H atoms (from three CH₃ groups) and 1 Cl atom \Rightarrow C₅H₉Cl.
- 11. **C** Spontaneity when $\Delta G = 0$: T = $\Delta H/\Delta S = 40~000~J \div 120~J~K^{-1} ≈ 333~K (closest to 330 K).$
- 12. **A** − E°cell = 0.77 0.15 = +0.62 V; n = $2 e^{-}$, so $\Delta G^{\circ} = -nFE^{\circ} \approx -2 \times 9.65 \times 10^{4} \times 0.62 = -1.2 \times 10^{5}$ J.
- 13. **B** Freezing reduces molecular disorder by converting a liquid into an ordered solid lattice.
- 14. **B** The fractionating column packed with beads allows multiple vaporisation–condensation cycles, ensuring better separation of components with close boiling points.
- 15. \mathbf{A} sulfur (Z = 16) fills orbitals to $3p^4$.
- 16. **B** In B the first electron removed is a 2p electron; 2p orbitals are higher in energy and less penetrating than 2s, so the electron is held less tightly despite the higher nuclear charge.
- 17. **A** Q = 500 g × 4.18 J g^{-1} °C⁻¹ × 10.9 °C = 2.28 × 10⁴ J = 22.8 kJ

Fuel mass burned = 20.24 g - 19.48 g = 0.76 g

 $\Delta H_{\text{(comb)}}$ per gram = 22.8 / 0.76 \approx 3.0 \times 10¹ kJ g⁻¹ (exothermic)

- 18. **D** low temperature and high pressure enhance intermolecular forces and particle volume effects.
- 19. **A** Diagram A shows products at a higher energy level than reactants (endothermic) and an activation barrier approximately twice the height of the net enthalpy change.
- 20. **C** 0.12 g Mg ÷ 24.3 g mol⁻¹ = 4.94 × 10⁻³ mol. Mg + Cl₂ \rightarrow MgCl₂ (1 : 1). Mass MgCl₂ = 4.94 × 10⁻³ mol × 95.3 g mol⁻¹ \approx 0.47 g.
- 21. **C** n = 2.00 g / 100.1 g mol⁻¹ \approx 0.020 mol; V = nRT/P \approx 0.020 × 8.31 × 298 / 1.00 × 10⁵ = 4.95 × 10⁻⁴ m³ = 4.95 × 10² cm³.
- 22. **D** higher T favours the endothermic reverse reaction, shifting left and lowering Kc.
- 23. **D** Increasing pressure favours the side with fewer gas molecules (NH₃), so % NH₃ should rise with pressure. Lower temperature favours the exothermic forward reaction, so the 400 °C curve must lie above the 500 °C curve. Only diagram D shows both trends.
- 24. **C** Higher pressure favours the side with fewer gas moles (1 mol vs 2 mol); exothermicity is secondary when only pressure changes.
- 25. **A**. The H-O-N angle is determined by a bent arrangement around the oxygen (≈104°), while the nitrogen is trigonal-planar, giving an O-N-O angle of ≈120°.
- 26. **B** The Arrhenius form $\ln k = -E_{\alpha}/RT + \ln A$ is linear when $\ln k$ (here $k \propto 1/t$) is plotted against 1/T, giving gradient $-E_{\alpha}/R$.
- 27. **A** Rate-determining step involves $A_2 + B$; because $[A_2] \propto [A]^2$ from the fast pre-equilibrium, the overall rate law is rate = $k[A]^2[B]$, matching the experimental orders (second order in A, first in B).
- 28. **C** For a strong monoprotic acid, $[H^+] = 1.0 \times 10^{-3} \text{ M}$; pH = $-\log[H^+] = 3$.
- 29. **B** Henderson–Hasselbalch: pH = pK_a + log([salt]/[acid]) = 4.76 + log(0.20/0.10) = 4.76 + 0.30 = 5.06.
- 30. **B** Magnesium, with the more negative E°, is oxidised (anode); the SHE is reduced (cathode). Hence electrons move Mg \rightarrow Pt and E°cell = 0 (–2.37) = +2.37 V.
- 31. **B** A very broad O–H stretch overlapping 2500 3300 cm⁻¹ combined with a C=O stretch around 1700 cm⁻¹ is characteristic of a carboxylic acid.

- 32. **C** Raising the temperature spreads the energy distribution: more particles have higher energies, the peak moves right and lowers, but particle number (area) stays the same.
- 33. **A** Liquid M contains four carbon atoms and a terminal -CHO group, so the correct name is butanal.
- 34. **B** –The terminal –CHO group is an aldehyde.
- 35. **B** Electrophilic addition follows Markovnikov's rule, giving 2-bromopropane.
- 36. **A** First-order kinetics dependent only on the halide concentration indicates an SN1 mechanism with a rate-determining ionisation step forming a stable tertiary carbocation.
- 37. **B** The concentration falls from about 0.083 mol dm⁻³ to 0.060 mol dm⁻³ in 10 s (Δ [H₂O₂] \approx 0.023 mol dm⁻³). Rate = 0.023 / 10 \approx 2.3 × 10⁻³ mol dm⁻³ s⁻¹.
- 38. **C** Water has two bonding pairs and two lone pairs, giving a bent geometry with ≈ 104.5° H–O–H bond angle.
- 39. **B** $0.250 \text{ mol} \times 6.02 \times 10^{23} \text{ mol}^{-1} = 1.51 \times 10^{23} \text{ molecules}.$
- 40. C Applying Hess's law:
 - 2 Δ_a □ H(Ag) + 1462 + 249.2 − 141.1 + 798 − 2969 = −31 → 2 Δ_a □ H(Ag) ≈ 570 kJ mol⁻¹ → Δ_a □ H(Ag) ≈ 285 kJ mol⁻¹.